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Abstract

In a classical distributed framework, we present a novel distributed observer for genuinely nonlinear continuous-time plants.

A network of sensors monitors a multiple-outputs plant. Each sensor measures only a portion of the plant’s outputs and the

sensing capability is di↵erent from sensor to sensor. The assumption of strongly connected digraph on the underlying sensor

network ensures robustness and direct communication paths between nodes. Moreover, incremental homogeneity assumptions

on the plant embrace a very large class of nonlinear systems for which a distributed observer can be designed. The distributed

observer consists of local observers associated with each sensor, asymptotically estimating the entire state of the plant only

by using the local sensing capability and information exchanged through the communication network. Numerical simulations

on a network of interconnected Van Der Pol oscillators confirms theoretical results. Robustness and switching topologies are

also discussed and suitable modifications of the distributed observer are proposed.
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1 Introduction

The distributed state estimation has received an increas-
ing attention and up-to-date it has been addressed with
di↵erent approaches. Such attention is motivated by the
feeling that, in many practical engineering systems, not
a su�cient number of measurements can be made at
a single location to give an asymptotic estimate of the
plant state and the use of centralized techniques could
be expensive or unfeasible. Loosely speaking, the frame-
work of the distributed estimation problem considers a
multiple-outputs plant monitored by a network of sen-
sors. Each sensor measures only a portion of the output
vector and the sensing capability is di↵erent from sensor
to sensor. The main problem is to design a distributed
observer associated with the sensors network, which es-
timate asymptotically the entire state of the plant only
by the use of the local measurements and estimations
exchanged over the communication network. The main
challenge is represented by the local lack of observability
of the main plant, i.e. from the sensor’s perspective the
plant is not observable. This implies that classical ob-
server design techniques cannot be applied directly for
each sensor. In the last decade di↵erent distributed tech-
niques have been introduced, an overview of which can
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be found in [13]. There is a growing number of results in
the observer-based design for both discrete and continu-
ous time plants. The state of the art relies mostly on the
joint (or collective) observability of the main plant and
the definition of asymptotic omniscience in [16]. Such
definition formalizes the general concept of agreement
(or consensus) previously used in e.g. [14] to refer to an
asymptotic decay of the estimation error in a distributed
framework.

Distributed observers achieving asymptotic omniscience
for discrete LTI systems are studied in [10][13]. A stand-
ing result is represented by [13] where authors have de-
termined necessary and su�cient conditions for the exis-
tence of a reduced-order distributed observer satisfying
certain scalability conditions. It should be noted that in
this approach a sort of joint observability is addressed
as observability by a set of source component represen-
tative nodes. In [10] a distributed observer is provided,
extending the idea of the Kalman observable canonical
decomposition to a setting with multiple sensor.
Another interesting approach [1] concerns the decen-
tralized observability of a network, where methods and
conditions on underlying graph is investigated to ensure
joint observability even relatively to a subset of sensors.

For continuous-time results, the joint observability cov-
ers a crucial aspect in the design. Inspired by [16],
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[19, 8, 3, 21] provide conditions for the existence of
omniscience-achieving Luenberger observers for contin-
uous LTI plants with di↵erent underlying graphs. The
procedure in [3], [8] relies both on orthogonal transfor-
mation which led to a Kalman decomposition. Moreover,
in [3] strongly connected digraphs are handled with
graph mirroring [15] while observer gains are computed
by solving LMIs. In [19] the distributed stabilization
problem has been accounted for LTI plants with a num-
ber of network topologies. Our previous work [9] studies
the problem of achieving the asymptotic omniscience
for nonlinear feedback linearizable systems, introducing
the notion of semi-global omniscience (i.e. compact set
of state trajectories to be estimated) and a semi-global
omniscience-achieving observer is designed.

Robustness issues are discussed for linear models in [18]
with L

2

disturbances by using a H8 approach and re-
siliency to faults and attacks in [4] and [11] (with small
delays). Time-varying topologies are considered for lin-
ear models in [18] (Markov-type switchings) and in [22]
(deterministic-type switchings) with no disturbances: it
is proved that if the dwell time of the switching law (i.e.
the time interval between each switching and the next
one) is long enough it is alway possible to obtain omni-
science (in quadratic mean sense, wherever it applies).

In this paper we present a new class of omniscience-
achieving observers for nonlinear systems under very
general assumptions. We allow the presence of incremen-
tal homogeneous nonlinearities in the system’s dynam-
ics and its outputs. The systems we consider in this pa-
per include a large class of nonlinear systems not lim-
ited to globally Lipschitz, lower/upper triangular or ho-
mogeneous systems. Moreover, the plant’s dynamics is
assumed to be bounded, which is reasonable even in a
non-distributed context. As well as [13, 3, 9], we assume
joint (or collective) observability of the plant. We bor-
row the definition of asymptotic omniscience from [13]
and the distributed framework from [3], in particular we
assume strongly connected and directed graphs on the
underlying sensor network. Also, the present work gen-
eralizes in many directions our preliminary results in [9].
The novelty of our distributed observer is its nonlinear
structure, which is introduced to cope with the nonlin-
earities of the plant.

Next we focus our attention on the robustness issue by
introducing in the model L8 (i.e bounded time-varying)
disturbances: we prove how to modify our distributed
observer to take into account uncertainties/faults mod-
eled by the disturbances. In this case, we formulate a
robust version of the omniscience problem and under
some conditions on the nonlinearities/uncertainties of
the model, we prove that it is possible to achieve robust
omniscience. Robust omniscience allows for a maximum
tolerated estimation error (given by the designer) at each
node (see [4], [11] for comparisons). L

2

disturbances may
be also taken into account by modifying the distributed

observer according to a classical H8 approach. Our fur-
ther contribution is to consider also time-varying topolo-
gies (changes in neighbors, in the number of assigned
data packets per node and so on) and give conditions on
the dwell time of the switching law under which a suit-
able modification of our distributed observer achieves
robust omniscience (see [22], [18] for comparisons).

2 Notation

(N1)Rn (resp.Rnˆn) is the set of n-dimensional real col-
umn vectors (resp. nˆpmatrices). R• (resp. Rn

•, R
nˆp
• )

denotes the set of real non-negative numbers (resp. vec-
tors in Rn, matrices in Rnˆp, with real non-negative
entries). R° (resp. Rn

°) denotes the set of real positive
numbers (resp. vectors in Rn with real positive entries).
pRn

q

˚ is the dual space of Rn (space of row vectors).

(N2) For any matrix A P Rpˆn we denote by Ai,j or
rAsi,j the pi, jq-th entry of A and for any vector v P Rn

we denote by vi the i-th element of v. Also, we may write
vectors v P Rn as pv

1

, . . . , vnq

T , vectors w P pRn
q

˚ as
pw

1

, . . . , wnq and matrices A P Rsˆn as A “ rv
1

, . . . , vns

(i.e. by columns) or A “ rwT
1

, . . . , wT
s s

T (i.e. by rows).
TrtAu denotes the trace of A P Rnˆn. Moreover,

diagtAp1q, . . . , Apmq
u “

¨

˝
Ap1q

¨ ¨ ¨ 0
... ¨ ¨ ¨

...
0 ¨ ¨ ¨ Apmq

˛

‚

where Apjq is any matrix and the 0 blocks have suitable
dimensions. We retain a similar notation for functions.
Also, |a| denotes the absolute value of a P R, }a} denotes
the euclidean norm of a P Rn with }a}M :“

?

aTMa, M
positive semi-definite matrix, }A} denotes the norm of
A P Rnˆn induced from the euclidean norm } ¨ }.

(N3)K denotes the set of continuous functions f : R• Ñ

R• strictly increasing and such that fp0q “ 0, K8 de-
notes the set of functions f P K such that fpsq Ñ `8

as s Ñ `8.

(N4) A saturation function �h with saturation levels
h P Rn

° is a function �hpxq :“ p�h1px
1

q, . . . ,�h
n

pxnqq

T ,
x P Rn, such that for each i “ 1, . . . , n and xi P R:

�h
i

pxiq “

#
xi |xi| § hi

signpxiqhi otherwise.
(1)

It is easy to prove that |�h
i

px1
iq ´ �h

i

px2
i q| § 2|�h

i

px1
i ´

x2
i q| and |�h

i

px1
iq| § hi for each hi ° 0 and for all x1

i, x
2
i P

R.
(N5) For ✏ P R°, the group of dilations G “ p✏r, ˛q is the
set of elements ✏r :“ p✏r1 , . . . , ✏rnq

T
P Rn, r P Rn, with

group operation ✏r
1

˛ ✏r
2

“ ✏r
1`r2

and identity element
1 :“ p1, . . . , 1q

T (or 1n if we want to stress the dimension
of the vector).
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Also, we define the ✏ŕ dilation of v P Rn as the left group
action ˛ on Rn defined as ✏r ˛ v – p✏r1v

1

, ¨ ¨ ¨ , ✏rnvnq

T .
Similarly, we define the ✏ŕ dilation of w P pRn

q

˚ as
the right group action ˛ on pRn

q

˚ defined as w ˛ ✏r –
p✏r1w

1

, ¨ ¨ ¨ , ✏rnwnq.

By extension, we can define the left ✏ŕ dilation of A “

rvT
1

, . . . , vTn s

T
P Rnˆs as the left group action ˛ on Rnˆs

defined as ✏r ˛ A – r✏r1vT
1

, ¨ ¨ ¨ , ✏rnvTn s

T and the right
✏ŕ dilation ofA “ rv

1

, . . . , vns P Rsˆn as the right group
action ˛ on Rsˆn defined as A ˛ ✏r – r✏r1v

1

, ¨ ¨ ¨ , ✏rnvns.
Properties are given in the appendix.

(N6) for any vectors x, y P Rn we write x ® y if and
only if xi § yi for all i “ 1, . . . , n. We retain the same
notation for matrices A,B P Rnˆn: A ® B if and only if
Aij § Bij for all i, j “ 1, . . . , n.

3 The structure of the network

In this paper we consider weighted graphs denoted by
G “ pN , E ,Aq, N is a finite nonempty set of nodes,
E Ä N ˆN is an edge of ordered pairs of nodes, and A P

RNˆN denotes the adjacency matrix, with N the cardi-
nality of N (we will identify N with the set t1, . . . , Nu).
The pi, jq-th entry Ai,j is the weight associated with the
edge pi, jq. We have Ai,j ‰ 0 if and only if pi, jq P E .
Otherwise Ai,j “ 0. An edge pi, jq P E means that the
information flows from node i to node j. A graph is said
to be undirected if it has the property that pi, jq P E ñ

pj, iq P E for all i, j P N ; otherwise, we will say that the
graph is directed. We will assume that the graph is sim-
ple, i.e. Ai,i “ 0 for all i P N . For an edge pi, jq node j
is a neighbor of node i. A directed path from node i

1

to
node il is a sequence of edges pik, ik`1

q, k “ 1, 2, . . . , l´1.
A directed graph G is strongly connected if between any
pair of distinct nodes i and j in G, there exists a directed
path from i to j, i, j P N . In this paper we assume that
the graph G is strongly connected.

The Laplacian L P RNˆN is defined as L :“ M ´ A
where the i-th diagonal entry of the diagonal matrix M
is given bymi “

∞N
j“1

Ai,j . By construction L has a zero
eigenvalue with an associated eigenvector 1N (i.e. such
that L1N “ 0) and if the graph is strongly connected
all the other eigenvalues lie in the open right-half com-
plex plane. For strongly connected graphs G it is pos-
sible to find a diagonal positive definite matrix D with
positive elements such that L̂ “ DL ` LTD is positive
semi-definite (see lemma B.1). The matrix DL is the
Laplacian of the balanced digraph obtained by adjust-
ing the weights in the original graph. The matrix L̂ is
the Laplacian of the undirected graph obtained by tak-
ing the union of the edges and their reversed edges in
this balanced digraph. This undirected graph is called
the mirror of this balanced graph.

4 The class of systems, problem statement and
main assumptions

We consider continuous-time nonlinear systems:

9xt “ Axt ` �pxtq, yt “ Cxt `  pxtq, t • 0, (2)

with state xt P Rn, measurements yt P Rp and pC,Aq

observable.We assume that � and  are locally Lipschitz
and A,C of the form

A “ diagtAp1q, . . . , ApNq
u, C “ diagtCp1q, . . . , CpNq

u,

Apiq
“ diagtApi,1q, . . . , Api,ppiqq

u,

Cpiq
“ diagtCpi,1q, . . . , Cpi,ppiqq

u, (3)

and Api,jq
P Rnpi,jqˆnpi,jq

and Cpi,jq
P R1ˆnpi,jq

having
the form

Api,jq
“

¨

˚̊
˝

0 1 0 ¨ ¨ ¨ 0
...

... ¨ ¨ ¨

...
0 0 0 ¨ ¨ ¨ 1
0 0 0 ¨ ¨ ¨ 0

˛

‹‹‚, Cpi,jq
“ p 1 0 ¨ ¨ ¨ 0 q ,

with
∞N

i“1

ppiq
“ p and

∞N
i“1

∞ppiq

j“1

npi,jq
“ n. We define

also the following set of indexes, used in our assumptions:

S “ tpps,rq
P N : pps,rq

“

sÿ

j“1

npr`1,jq
`

rÿ

i“1

ppiqÿ

j“1

npi,jq,

r “ 0, . . . , N ´ 1, s “ 1, . . . , ppr`1q
u. (4)

This is the set of indexes which correspond to the last
row of each Api,jq in A. Accordingly, y and  pxq will be
partitioned as

y“ryp1qT, . . . , ypNqT
s

T , pxq“r p1qT
pxq, . . . , pNqT

pxqs

T .

and C by block rows as

C“rHp1qT, . . . , HpNqT
s

T (5)

(i.e.Hpiq represents the i-th block row ofC: in our analy-
sis we use this block decomposition of C rather than the
one in (3) which is introduced only for defining precisely

the block structure of C). Here, the portion ypiq
P Rppiq

is assumed to be the only information that can be pro-
cessed by the node i. By assumption the pair pC,Aq is
observable (joint or collective observability) while each
pair pCpiq, Aq separately is not observable (local unob-
servability). For clarity, throughout the paper subscripts
i will be always associated to components of vectors or
functions and superscripts piq will be associated to node
variables.
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4.1 Comments on the class of systems

For a linear system 9zt “ Jzt, yt “ Wzt, with full row
rank matrix W and pW,Jq observable, there exists a
change of coordinates x “ Tz for which in the new co-
ordinates we have

9xt “ pA ` BF qxt, yt “ Cxt, (6)

where pC,Aq is as in (3), B is

B “ diagtBp1q, . . . , BpNq
u, (7)

Bpiq
“ diagtBpi,1q, . . . , Bpi,ppiqq

u

Bpi,jq
“ p 0 0 ¨ ¨ ¨ 1 q

T
P Rnpi,jqˆ1,

and F P Rpˆn ((6) is an observable canonical form for
a linear multi-output system). The system (6) has the
form (2) with �pxq “ BFx and  pxq “ 0. Therefore,
there is no loss of generality in considering the system
in the form (2) (dumping the system nonlinearities in
 and �). The model (2) is enough general to include
many nonlinear systems with observable linearization
(in particular, globally Lipschitz systems when �pxq is
globally Lipschitz, triangular systems when �pxq has a
triangular structure, homogeneous systems when �pxq

is homogenous, Lur’e systems when �pxq “

r�pCxq and
so on). The reason for considering preferred coordinates
for (2) is that in this coordinates it is possible to design
nonlinear observers using suitable assumptions on the
nonlinearities � and  . This is a crucial step in the design
of our distributed observer for (2) and for this reason
we consider preferred coordinates (2). More generally,
detectability of pC,Aq in (2) can be taken into account by
decomposing (2) into observable pCO, AOq (of the form
(3)) and unobservable pCU , AU q subsystems and modify
accordingly the distributed observer.

Notice that in the form (2),(3) orthogonal matricesHpiq,
i “ 1, . . . , N , (the block rows of C in (5)) are required.
This corresponds to assuming no overlapping measure-
ments among nodes/sensors. In remark 5.1 we will point
out how to take into account a possible overlapping of
the measurements (i.e. ypjq and ypiq for some j ‰ i have
at least one component in common) in the design of the
distributed observer.

A more challenging (and more realistic) model than (2)
is

9xt “ Axt ` �pxt, �tq, yt “ Cxt `  pxt, �tq, (8)

�t P Rs a (time-varying) bounded disturbance. The dis-
turbance �t models uncertainties of the system as well as
faults. Another way of modeling �t is as a (time-varying)
L
2

(i.e. square integrable) disturbance (see for instance
[18]). We will consider (8) in section 6 for discussing ro-
bustness issues.

4.2 Distributed estimation problem formulation and
structure of the distributed observer

We will design a distributed nonlinear observer for the
system (2) with the given communication network G. Let
g P Rn, r P Rn

°, �, c, ✏ P R°, diagonal positive definite
D P RNˆN and � P Rnˆn be design parameters. The
distributed observer will consists of N local observers
and the local observer at the sensing node i has the
following structure

9̂x
piq
t “ Ax̂

piq
t ` �

´
�c✏rpx̂

piq
t q

¯
(9)

`

TrpDq

Di,i
LpiqZpiq

t ` �P´1K
piq
t , i P N , x̂

piq
0

“ 0,

with innovation process

Z
piq
t :“ y

piq
t ´ Hpiqx̂piq

t ´  piq
´
�c✏rpx̂

piq
t q

¯
,

consensus term

K
piq
t :“

Nÿ

j“1

Ai,jpx̂
pjq
t ´ x̂

piq
t q (10)

and matrices

Lpiq:“ P´1HpiqTRpiq, P :“pI ´ GAT
q

T
˛✏´2r

˛pI ´ GAT
q,

G :“ ✏g ˛ � ˛ ✏g, Rpiq :“ Hpiq
p✏´r

˛ G ˛ ✏´r
qHpiqT , (11)

where x̂piq is the state of the local observer at the sens-
ing node i and Ai,j is the pi, jq entry of the adjacency
matrix A of the given network G. Each local observer
uses the local innovation Zpiq (obtained from the partial
information yi available at the node) and exchanges its
state estimate with the state estimates of its neighbors.

The local observers are initialized at x̂piq
0

:“ 0 but this
has been done only for simplicity (this restriction can be
easily relaxed: see remark 5.2).

Remark 4.1 The distributed observer (9) is such that
at each node the following information is processed: a lo-
cal information (the local information on the network,
the data packet ypiq processed at the sensing node and the
neighbor’s estimates x̂pjq, pi, jq P E) and a global infor-
mation (the matrixD which, as it will be seen, defines the

Laplacian L̂ “ DL ` LTD of the mirror graph and the
parameters �, c, ✏ and � which rely on a perfect knowl-
edge of the system nonlinearities �pxq and  pxq with a
consequent lack of robustness). However, by definition
(see lemma B.1) N “ 1T

ND1N “ TrpDq and 1T
NDL “ 0

which, by the structure of the Laplacian L, implies that
each Di,i, i “ 1, . . . , N , depends on the number N of the
nodes and on the structure of the network around the node
i (i.e. how it is connected to its neighbors). Therefore,Di,i
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in (9) is rather a local information while TrpDq is equal
to the number N of nodes in the network. With regard to
the parameters �, c, ✏ and �, in section 6 by considering
the uncertain model (8), we will modify the distributed
observer (9) in such a way that the parameters �, c, ✏
and � will depend on the system nonlinearities �px, 0q

and  px, 0q which contain much less information than
�px, �q and  px, �q and guarantee the robustness of the
distributed observer against disturbances/uncertainties �
(distributed observer (43)).

The task of a distributed observer for (2) is to coopera-
tively estimate the state of the system (2). For a formu-
lation of our problem we will refer to the notion of om-
niscience introduced in [13] with a slight generalization
(the set C below is all the state space in [13]).

Definition 4.1 (Asymptotic Omniscience (relatively
to C Ä Rn)): A distributed observer tx̂piq

uiPN achieves
asymptotic omniscience for (2) if for all the state trajec-

tories xt of (2) in C Ä Rn we have limtÑ`8 }x̂
piq
t ´xt} “ 0

for all i P N , i.e. the state estimate x̂
piq
t at each node i

asymptotically converges to xt.

Given C Ä Rn, asymptotic omniscience (relatively to C)
is guaranteed for all the trajectories xt in C (or for all
initial conditions x

0

in a smaller set CS Ñ C): in compari-
son with [13], this is a kind of semiglobal (relatively to C)
omniscience property. Global omniscience (C “ Rn) for
nonlinear systems will be not considered in this paper,
since it requires much stricter conditions on the nonlin-
earities.

4.3 Assumptions and main result

Our assumptions on the system (2) are the following (see
a review of various notions of incremental homogeneity
in appendix A).

(H0) (state boundedness): the state trajectories xt of
(2) are contained in some known compact set C Ä Rn,

(H1) (incremental homogeneity in the upper bound):
for some degrees g, ĝ P Rn and weights r P Rn

° such that
for each j R S

2gj`1

´ gj § ĝj § gj , (12)

where ĝ P Rn is defined component-wise as follows

ĝi :“ gi, i P S; ĝi :“ ri`1

´ ri ´ gi`1

, i R S, (13)

(i) � is incrementally homogeneous in the upper bound
with quadruples tr, r ` ĝ, g,�px1, x2

qu, with �p0, 0q “

BF , B as in (7) and for some F P Rpˆn,

(i) CT is incrementally homogeneous in the upper
bound with quadruples tr, r ´ g, g, CT px1, x2

qu, with
 p0, 0q “ ↵C and ↵ P r0, 1q,

(H2) (uniform incremental homogeneity in the 0-limit):
� is uniformly incrementally homogeneous in the 0-limit
with triple t1n,1n,

B�
Bx1 px1

qx2
u and CT is uniformly

incrementally homogeneous in the 0-limit with triple
t1n,1n, C

T B 
Bx1 px1

qx2
u.

The main result of this paper concerns the achievement
of (semiglobal) omniscience and it is stated as follows.

Theorem 4.1 Consider a network N described by a
directed strongly connected graph G and a system (2)
with pC,Aq observable (collective observability). Given
a compact set C Ä Rn and under assumptions (H0)-
(H2) there exist ✏˚

• 1, diagonal positive definite � and
D and �, c P R° such that for all ✏ • ✏˚ the distributed
observer tx̂piq

uiPN over the given network N described
by (9) achieves asymptotic omniscience for (2) relatively
to C.

4.4 Comments on the assumptions on the system

Assumptions (H0)-(H1) are enough general for cop-
ing with genuinely nonlinear systems and were adopted
(with additional restrictive conditions) in [2] for design-
ing observers for a single-output nonlinear system with
observable linearization.

Assumption (H0) requires that the state trajectories of
(2) live for all times inside a known compact set C, which
means that we are restricting the set of initial conditions
x
0

to a known compact set CS Ñ C.

Assumption (H1) is met for a large class of nonlinear
systems (2), in particular any system (2) with either
one of: linear, globally Lipschitz, lower triangular, up-
per triangular or homogeneous �pxq. Assumption (H1)
amounts to solve a set of algebraic inequalities in the
unknowns r P Rn

° and g P Rn (see examples A.1 and
A.2 in appendix A). In particular, notice the conditions
�p0, 0q “ BF (the linearization of �pxq around 0 has
the form BFx: compare with the analogous term in (6))
and  p0, 0q “ ↵C with ↵ P r0, 1q (the linearization of
 pxq around 0 has the form ↵Cx with ↵ P r0, 1q, which
is a sector-like condition). For example

�pxq “

¨

˚̋
0

´µx
1

` µx
2

p1 ´ x2

1

q

0
ax

1

` bx
2

´ µx
3

` µx
4

p1 ´ x2

3

q

˛

‹‚

(see section 8 for a more general example), with µ, a, b °

0, satisfies (H1) with r
1

“ r
3

“ 1, r
2

“ r
4

“ 3 and
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g
1

“ g
2

“ g
3

“ g
4

“ 1 (in this example S “ t2, 4u),
B “ diagtp0, 1q

T , p0, 1q

T
u and

F “

ˆ
µ µ 0 0
a b µ µ

˙
.

Assumption (H2) is always satisfied for polynomial func-
tions � and  and requires that small increments of �
and  from some given point x P C are uniformly (over
C) approximated by their linear approximation around
x.

A fact extensively used in the proofs of our results is
that, for ✏ • 1, we can (lower and upper) bound the
action of a dilation ✏g on Rn as follows:

✏min

j

tg
i

u1n ® ✏g ® ✏max

j

tg
i

u1n. (14)

5 Proof of the main theorem

The rationale behind the proof of theorem 4.1 is the fol-
lowing. Consider the estimation error e resulting from
(2) and the N local observers (9) and change error coor-
dinates ê in such a way to diagonalize the Laplacian L̂ of
the mirror graph. Associated to the Laplacian we have a
potential Ppêq “ êT L̂e. With a Lyapunov function V̂ pêq

we obtain that the time derivative 9̂
V pêq along the esti-

mation error trajectories is negative definite if the po-
tential Ppêq is zero. In particular, it is equal to the time
derivative of a certain Lyapunov function along the error
trajectories between the state trajectories of (2) and the
estimate provided by a “centralized” observer (i.e. which
processes all the data packets of the network). Using this

and the fact that 9̂
V pêq is quadratic in ê for small ê (by

(H2)), � in (9) is designed so that 9̂
V pêq is negative defi-

nite also for nonzero potential Ppêq. The parameters c, ✏
and � are designed on the “centralized” observer (using
(H0), (H1)). Asymptotic convergence of the estimation
error ê follows from Lyapunov theorems.

5.1 The estimation error dynamics and convergence
properties

In this section we study some stability properties of the
estimation error system resulting from (2) and the N
local observers (9). Let the matrix D be selected as in
lemma B.1, i.e. D is diagonal positive definite such that
DL ` LTD is positive semi-definite. Also, c̄ ° 0 and
� P Rnˆn be selected as in lemma B.4 and pick c P p0, c̄q.
On account of (H0), we will assume that ✏

1

° 1 have
been selected so that

�c✏rpxq “ x @✏ • ✏
1

, x P BpCq (15)

(BpCq is the closure of an open set B Å C) in other
words the saturation �c✏r is not active on BpCq. From
now on we consider ✏ • ✏

1

. We also write for simplicity
�p¨q instead of �c✏rp¨q and for notational convenience
we use the following incremental operator � with any
f P C0

pRn,Rn
q: �fp�

1

,�
2

q :“ fp�
1

q ´ fp�
2

q.

If epiq :“ x ´ x̂piq and e :“ ppep1q
q

T , . . . , pepNq
q

T
q

T , on
account of (15), we have with the Kronecker product
formalism (and using the property pA

1

bA
2

qpB
1

bB
2

q “

pA
1

B
1

q b pA
2

B
2

q)

9et “

`
IN b A´TrtDupD´1

b InqLQ
˘
et´�pL b P´1

qe

`F pxt, etq ´ TrtDupD´1

b InqLQUpxt, etq (16)

with

L :“diagtLp1q, . . . , LpNq
u, Q :“diagtHp1q, . . . , HpNq

u(17)

F px, eq :“

¨

˚̋
�p� ˝ �qpx, x ´ ep1q

q

...
�p� ˝ �qpx, x ´ epNq

q

˛

‹‚

Upx, eq :“

¨

˚̋
�pHp1qT p1q

˝ �qpx, x ´ ep1q
q

...
�pHpNqT pNq

˝ �qpx, x ´ epNq
q

˛

‹‚.

Also, notice that on account of (H3), since by (15) and
compactness of C, for any compact set S Ä Rn we have:

lim
�Ñ0

max
xPC

e

piqPS

››››
�p� ˝ �qpx, x ´ �epiq

q

�
´

B�

Bx
pxqepiq

›››› “ 0

lim
�Ñ0

max
xPC

e

piqPS

›››
�pHpiqT piq

˝ �qpx, x ´ �epiq
q

�

´HpiqT B piq

Bx
pxqepiq

››› “ 0.

for each i “ 1, . . . , N . Therefore, if we define

F
0

px, eq :“diag

"
B�

Bx
pxq, ¨ ¨ ¨ ,

B�

Bx
pxq

*
e,

U
0

px, eq :“diag
!
Hp1qT B p1q

Bx
pxq, ¨ ¨ ¨ , HpNqT B pNq

Bx
pxq

)
e,

we have the following useful property: for anyN -tuple of
compact sets Sp1q, . . . ,SpNq

Ä Rn with SˆN :“ Sp1q
ˆ

¨ ¨ ¨ ˆ SpNq

lim
�Ñ0

max
xPC

ePSˆN

››››
F px,�eq

�
´ F

0

px, eq

›››› “ 0

lim
�Ñ0

max
xPC

ePSˆN

››››
Upx,�eq

�
´ U

0

px, eq

›››› “ 0. (18)
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For any invertible R P RnNˆnN and since R maps com-
pact sets into compact sets, we also have

lim
�Ñ0

max
xPC

ePSˆN

››››
F px,�Req

�
´ F

0

px,Req

›››› “ 0

lim
�Ñ0

max
xPC

ePSˆN

››››
Upx,�Req

�
´ U

0

px,Req

›››› “ 0. (19)

Consider the following change of coordinates

ê “ pT b Inqe (20)

where T P RNˆN is an orthogonal matrix chosen as in
lemma B.2. In these new coordinates (16) reads out as

9̂et “ pT b InqADpTT
b Inqêt ´ �ppTLTT

q b P´1

qêt

`pT b InqF
`
xt, pTT

b Inqêt
˘

`TrtDuppTD´1

q b InqLQU
`
xt, pTT

b Inqêt
˘
(21)

where we set

AD :“
`
IN b A ´ TrtDupD´1

b InqLQ
˘
.

Now, consider a candidate Lyapunov function for (21)

V̂ pêq :“ êT pT b InqpD b P qpTT
b Inqê. (22)

We want to prove that the derivative of V̂ along the
trajectories of (21) is negative definite. Using (B.7) with
orthogonality of T (lemma B.2) and the properties of
the Kronecker product

pT b InqrpD b P qpTT
b InqppTLTT

q b P´1

q

`ppTLTT
q b P´1

qpTT
b InqpD b P qspTT

b Inq

“

“
T pDL ` LTDqTT

‰
b In “ ⇤b In. (23)

From (21) and properties of the Kronecker product we
obtain

9̂
V |p21q “ ´�êT p⇤b Inqê ` 2

”
êT pTD b P qADpTT

b Inqê

` êT ppTDq b P qF
`
x, pTT

b Inqê
˘

(24)

´ TrtDuêT pT b P qLQU
`
x, pTT

b Inqê
˘ ı

Introduce the set

F :“ tê P RnN : êT p⇤b Inqê “ 0u

and claim for a moment that

@ê P Fzt0u, @x P C ñ (25)

Wpx, êq :“ 2
”
êT pTD b P qADpTT

b Inqê

` êT ppTDq b P qF
`
x, pTT

b Inqê
˘

´ TrtDuêT pT b P qLQU
`
x, pTT

b Inqê
˘ ı

† 0

and, in addition,

@ê P Fzt0u, @x P C ñ (26)

W
0

px, êq :“ 2
”
êT pTD b P qADpTT

b Inqê

` êT ppTDq b P qF
0

`
x, pTT

b Inqê
˘

´ TrtDuêT pT b P qLQU
0

`
x, pTT

b Inqê
˘ ı

† 0.

Notice that by construction

P
Nÿ

j“1

LpiqHpiq
“ CTCp✏´r

˛ G ˛ ✏´r
qCTC (27)

and

HpiqHpjqT
“ 0,@j ‰ i. (28)

Moreover, since ⇤ “ diagt0,�
2

, . . . ,�Nu with 0 † �
2

§

¨ ¨ ¨ § �N (lemma B.2), clearly

ê P F ô êj “ 0, j “ 2, . . . , N.

On account of the above and since the first row of T is
1?
N
1T
N (lemma B.2), it is straightforward to see that

@ê P F , @x P C ñ Wpx, êq “

Rpgq
px,

ê
1

?

N
q :“ 2p

ê
1

?

N
q

TTrtDuP
!

pA ´ KCq

ê
1

?

N

` �p� ˝ �q

ˆ
x, x ´

ê
1

?

N

˙

´ KC�pCT ˝ �q

ˆ
x, x ´

ê
1

?

N

˙ )
(29)

and

@ê P F , @x P C ñ

W
0

px, êq “ RpLq
px,

ê
1

?

N
q :“ 2p

ê
1

?

N
q

TTrtDuP
!

pA ´ KCq

`

B�

Bx
pxq ´ KCCT B 

Bx
pxq

) ê
1

?

N
(30)

where

K “ P´1CTR, P “ pI ´ GAT
q

T
˛ ✏´2r

˛ pI ´ GAT
q,

R “ Cp✏´r
˛ G ˛ ✏´r

qCT (31)

and G as in (11). Therefore, our claim (25) boils down
to prove the existence of a centralized observer for (2)
having the form

9̂x
pgq
t “ Ax̂

pgq
t ` �p�px̂

pgq
t qq ` KZ

pgq
t (32)
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with innovation process Zpgq
t :“ yt´Cx̂

pgq
t ´ 

´
�px̂

pgq
t q

¯

and matrices K,P and R as in (31) and G as in (11),
using a Lyapunov function V pêpgq

q :“ TrtDuêpgqTP êpgq

for the estimation error system with state êpgq
“ x ´

x̂pgq (this will be accomplished in section 5.2). At this
point, it comes into play the assumption of collective
observability, i.e.pC,Aq is an observable pair.

On the other hand, our second claim (26) boils down to
prove for the system

9xpLq
t “

„
A `

B�

Bxt
pxtq

⇢
x

pLq
t , y

pLq
t “ Cx

pLq
t `

B 

Bxt
pxtqx

pLq
t

(33)

(i.e. the system (2) linearized around its trajectory xt)
the existence of a centralized observer having the form

9̂x
pLq
t “

„
A `

B�

Bxt
pxtq

⇢
x̂

pLq
t ` KZ

pLq
t (34)

with innovation process Z
pLq
t :“ y

pLq
t ´ Cx̂

pLq
t ´

B 
Bx

t

pxtqx̂
pLq
t and matrices K,P and R as in (31) and

G as in (11), using a Lyapunov function VLpêpLq
q :“

TrtDuêpLqTP êpLq for the estimation error system with
state êpLq

“ xpLq
´ x̂pLq (this will be accomplished in

section 5.3). Collective observability, plays a key role
also at this point.

Having in mind (25) and (26) and going back to (24),
we are in a position to arrange the right-hand part of
(24) to be negative definite with a suitable selection of
� ° 0. Indeed, both (25) and (26) are crucial for the
existence of � ° 0 for which (24) is negative (the first, for
large values of the estimation error, the second for small
values). This is direct consequence of lemma B.3 with
⌦ :“ tê P RnN : V̂ pêq § !u for a fixed ! ° 0, Wpx, êq

in (25) and W
0

px, êq in (26). The functions Wpx, êq and
W

0

px, êq satisfy (B.8) by virtue of (19):

lim
�Ñ0

max
xPC

êPSˆN

››››
Wpx,�êq

�2
´ W

0

px, êq

››››

§ max
xPC

êPSˆN

›››ppDTT
q b P qê

››› ˆ

ˆ lim
�Ñ0

max
xPC

êPSˆN

›››
F

`
x,�pTT

b Inqê
˘

�
´ F

0

`
x, pTT

b Inqê
˘ ›››

`TrtDu max
xPC

ePSˆN

›››QTLT
pTT

b P qê
››› ˆ

ˆ lim
�Ñ0

max
xPC

êPSˆN

›››
U

`
x,�pTT

b Inqê
˘

�
´ U

0

`
x, pTT

b Inqê
˘ ›››

“ 0.

From lemma B.3 we obtain the existence of � ° 0 such
that

@ê ‰ 0 : V̂ pêq § ! ñ

9̂
V |p21q † 0, @x P C. (35)

This implies, with V peq :“ eT pD b P qe that:

@e ‰ 0 : V peq § ! ñ

9V |p16q † 0, @x P C. (36)

Equivalently, this means that the estimate x̂
piq
t of each

local observer (9) tends asymptotically to xt for all state
trajectories xt P C ensuing from the set

X :“ tx
0

P Rn : V p1 b x
0

q § !u

(recall that x̂
piq
0

“ 0 for all i P N ). Clearly, to guarantee

asymptotic convergence of each x̂
piq
t to xt for all state

trajectories xt in C ensuing from C we must prove that
X contains C. We will take care of this in section 5.4.

Remark 5.1 (Overlapping measurements). In the case
of overlapping measurements among nodes (i.e. ypjq and
ypiq for some j ‰ i have at least one component in com-
mon) both (27) and (28) are false. However, conclusions
in (29) and (30) remain the same if in (29), (30) and
(31) we change C into the matrix C

0

given by the r † p
independent rows Cj1 , . . . , Cj

r

of C and the definition of
R as R “ ⇤C

0

p✏´r
˛ G ˛ ✏´r

qp⇤C
0

q

T , where ⇤ is a diag-
onal r ˆ r matrix such that ⇤ “ diagt#j

1

, . . . ,#jru and
#ji is the square root of the number of repetitions of the
measurement yj

i

, i “ 1, . . . , r, in the vector y.

5.2 A centralized observer for (2) of the form (32)

As pointed out in the previous section, condition (25) is
met once ✏ is selected, with K,P and R as in (31) and
G as in (11), in such a way that:

Rpgq
px, êpgq

q :“ 2êpgqTP
!

pA ´ KCqêpgq

` �p� ˝ �q

´
x, x ´ êpgq

¯

´ KC�pCT ˝ �q

´
x, x ´ êpgq

¯ )
† 0 (37)

for all x P C and êpgq
‰ 0 (Rpgq is defined in (29) and

here normalized by TrtDu “ N). Here the collective ob-
servability assumption, i.e. (C,A) observable (and in the
form (3)), comes into play. Define repgq :“ pI ´GAT

qêpgq
and c̄, c and � be as in the previous section. As a matter
of fact, for all ✏ • ✏

1

, ✏
1

as in (15), using the definitions
(11), the group properties of the dilations (sections B.1
and B.2) and lemma B.5, we obtain after some compu-
tations that for all x P C and êpgq

Rpgq
px, êpgq

q § ´}✏´r`g
˛ repgq

}

2.
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5.3 A centralized observer of the form (34) for the lin-
earization of (33) around its trajectories

As pointed out in the section 5.1, condition (26) is met
once ✏ is selected, with the sameK,P and R and G used
in section 5.2, in such a way that:

RpLq
px, êpLq

q:“2êpLqTP
!
A´KC`

B�

Bx
pxq (38)

´KCCT B 

Bx
pxq

)
êpLq

† 0

for all x P C and êpLq
‰ 0 (RpLq is defined in (30) and

here normalized by TrtDu “ N). Pick ✏
2

• ✏
1

such that
for all ✏ • ✏

2

and x P C

´1nc ® ✏´r
˛ x ® 1nc (39)

and let ✏ • ✏
2

. Define repLq :“ pI´GAT
qêpLq. As a matter

of fact, by remark A.1 and on account, in particular,
of inequality (A.1), we obtain after some computations
that for all x P C and êpLq

RpLq
px, êpLq

q § ´}✏´r`g
˛ repLq

}

2.

5.4 Enlarging the region of convergence for the estima-
tion error

Our final task is to guarantee asymptotic convergence of

each x̂
piq
t to xt for all state trajectories xt in C ensuing

form C and to do this, as discussed at the end of section
5.1, we must finally choose ! ° 0 and ✏ “ ✏˚

• ✏
2

(see
definition of ✏

1

in (15) and ✏
2

in (39)) in such a way that

X :“ tx
0

P Rn : V p1 b x
0

q § !u Å C. (40)

To this aim, we set g :“ maxj gj , g :“ minj gj and

! :“ ✏2pg´gq. But

V p1 b x
0

q “ p1 b x
0

q

T
pD b P qp1 b x

0

q

“ N}✏´r
˛ pI ´ GAT

qx
0

}

2 (41)

(recall the definition of P and that TrpDq “ N). Using
(iv) of lemma B.5 and (14), for all ✏ • ✏

2

and x
0

P C

}✏´r
˛ pI ´ GAT

qx
0

}

2

§✏2pg´gq
}pI ` �AT

qp✏´r
˛ x

0

q}

2.

Since there clearly exists ✏˚
• ✏

2

such that for all ✏ • ✏˚

max
x0PC

}pI ` �AT
qp✏´r

˛ x
0

q}

2

§

1

N
(42)

then, as a consequence of (41), maxx0PC V p1 b x
0

q § !
for all ✏ • ✏˚. This condition with (41) gives (40).

Remark 5.2 (Non zero initial conditions for the local

observers). Each local observer (9) is initialized at x̂
piq
0

‰

0, i “ 1, . . . , N , for simplicity. If each local observer (9)

is initialized at some nonzero x̂
piq
0

P C, i “ 1, . . . , N , then
(40) must be changed accordingly into

X :“tpx
0

, x̂
0

q P Rn
ˆRnN :V px

0

´ x̂
0

q § !u Å C ˆ CˆN .

where CˆN :“ C ˆ ¨ ¨ ¨ ˆ C (N times) and x̂
0

:“

px̂
p1q
0

T , . . . , x̂
pNq
0

q

T
q

T is the vector of initial conditions
for the distributed observer. Consistently, in (41)-(42)
x
0

must be replaced with x
0

´ x̂
0

.

6 Robustness

Once the design of the distributed observer has been
clearly defined in the absence of system disturbances or
uncertainties, we consider the more general model (8)
where � P Rs is a (time-varying) bounded disturbance,
i.e. }�t} § �8 for all t • 0. We will design a distributed
nonlinear observer for the system (8) over the given net-
work G. The local observer at node i (9) is modified as
follows:

9̂x
piq
t “ Ax̂

piq
t ` �

´
�c✏rpx̂

piq
t q, 0

¯
(43)

`

TrpDq

Di,i
LpiqZpiq

t ` �p✏qP´1K
piq
t , i P N , x̂

piq
0

“ 0,

with � P K8 and innovation process

Z
piq
t :“ y

piq
t ´ Hpiqx̂piq

t ´  piq
´
�c✏rpx̂

piq
t q, 0

¯
, (44)

consensus term K
piq
t as in (10) and matrices Lpiq, P,Rpiq

and G as in (11). The parameters �, c, ✏ and � will de-
pend on the system nonlinearities �px, 0q and  px, 0q

which contain much less information than �px, �q and
 px, �q and guarantee the robustness of the distributed
observer against disturbance/uncertainties �. The task
of a distributed observer for (2) is to cooperatively es-
timate the state of the system (2) in the presence of
the disturbance/uncertainty �. For a formulation of our
problem we will refer to the following robust notion of
omniscience.

Definition 6.1 (Asymptotic Omniscience (relatively
to C Ä Rn with error tolerance ⇣ P R°)): A distributed
observer tx̂piq

uiPN achieves asymptotic omniscience for
(2) if for all the state trajectories xt of (8) in C Ä Rn

we have lim suptÑ`8 }x̂
piq
t ´ xt} § ⇣ for all i P N ,

i.e. the state estimate x̂
piq
t at each node i asymptotically

converges to xt with a maximum tolerated error ⇣.

Our assumptions on the system (8) must be strength-
ened as follows for the presence of the additional variable
� in � and  
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(H0)1(state boundedness): the state trajectories of (8)
are contained in some known compact set C Ä Rn,

(H1)1 (incremental homogeneity in the upper bound):
for some degrees g, ĝ, h P Rn and weights r, s P Rn

° satis-
fying gj`1

† ĝj § gj for j R S, where ĝ P Rn is defined
in (13), and

max
j

thj ´ sju † min
j

tgju ´ max
j

trju, (45)

(i) �px, �q is incrementally homogeneous in the upper
bound with quadruples

"ˆ
r
s

˙
, r ` ĝ,

ˆ
g
h

˙
,�

ˆˆ
x1
x2

˙
,

ˆ
�1
�2

˙˙*
,

with �p0, 0q “ BF , B as in (7) and for some F P Rpˆn,

(ii) CT px, �q is incrementally homogeneous in the up-
per bound with quadruples

"ˆ
r
s

˙
, r ´ g,

ˆ
g
h

˙
, CT 

ˆˆ
x1
x2

˙
,

ˆ
�1
�2

˙˙*
,

with  p0, 0q “ ↵C and ↵ P r0, 1q,

(H2)1 (uniform incremental homogeneity in the 0-limit):
�px, 0q is uniformly incrementally homogeneous in the
0-limit with triple p1n,1n,

B�
Bx1 px1, 0qx2

q and CT is uni-
formly incrementally homogeneous in the 0-limit with
triple p1n,1n, C

T B 
Bx1 px1, 0qx2

q.

For example �px, �q “ p0,´x
1

`x
2

p1´x2

1

q`�q

T satisfies
(H1)1 with s “ r

1

“ 1{2, r
2

“ 2, g
1

“ 1, g
2

“ 1{2 and
h “ ´2, B “ p0, 1q

T and F “ p1, 1, 1q. The main result
of this section concerns the achievement of omniscience
in the above specified sense and it is stated as follows.

Theorem 6.1 Consider a network N described by a
directed strongly connected graph G and a system (8)
with pC,Aq observable (collective observability). Given
a compact set C Ä Rn , ⇣ P R°, and under assump-
tions (H0)1-(H2)1 there exist ✏˚

• 1, diagonal positive
definite � and D, � P K8 and c P R° such that for all
✏ • ✏˚ the distributed observer tx̂piq

uiPN over the given
network N described by (43) achieves asymptotic omni-
science for (2) relatively to C with error tolerance ⇣.

(Sketch of the proof). The proof closely follows the proof
of theorem 4.1. With ✏ ° 1, g :“ minj gj and h ´ s :“
maxjthj ´ sju, using the assumptions (H0)1-(H2)1 we
obtain for a given ! ° 0 some ⇧,� ° 0 such that

@e :
4⇧N

�
✏´2pg´h´sq

§ V peq § !

ñ

9V § ´

�

4N
✏2gV peq, @x P C. (46)

This means that the estimation error et enters (in finite
time) the set

B :“ te P RnN : V peq §

4⇧N

�
✏´2pg´h´sq

u

and remains thereinafter, for all state trajectories xt P C
ensuing from the set X in (40). On account of (45) in
assumption (H1)1, we can select ✏ ° 1 in such a way that
C Ä X and at the same time B Ä te P Rn : }e} § ⇣u,
which proves omniscience with error tolerance ⇣.

7 Switching topologies

Once the design of the distributed observer has been
clearly defined for networks with time-invariant topolo-
gies, we consider the distributed state estimation prob-
lem for (8) over a network Gt with switching topology.We
assume that the directed graph Gt is described by an ad-
jacency matrix At which switches at (increasing) times
t “ tj , j P N, with infjPNptj`1

´ tjq ° 0 (dwell time),
among a collection of fixed topologies tA

1

, . . . ,Alu, l a
given integer. We also assume that for all the possible
topologies tA

1

, . . . ,Alu the graph remains strongly con-
nected. Accordingly, the graph has an associated Lapla-
cian Lt which switches at times t “ tj , j P N, among a
finite collection tL

1

, . . . ,Llu. By the strong connectiv-
ity of the graph under switching, there exist a matrix
Dt, diagonal and positive definite at each t • 0, and Tt,
nonsingular at each t • 0, such that Dt

j

Lt
j

` LT
t
j

Dt
j

is positive semi-definite and TT
t
j

pDt
j

Lt
j

` LT
t
j

Dt
j

qTt
j

“

t0,�
2,t

j

, . . . ,�N,t
j

u (see lemma B.1) for each j P N with
0 † �i,t

j

§ �i`1,t
j

, i “ 2, . . . , N ´ 1.

With this in mind, the local observer at node i (43) is
modified as follows: for t P rtj , tj`1

q

9̂x
piq
t “ Ax̂

piq
t ` �

´
�c✏rpx̂

piq
t q, 0

¯
(47)

`

TrpDtq

rDtsi,i
L

piq
t Zpiq

`�p✏qP´1K
piq
t , i P N , x̂

piq
0

“ 0,

with � P K8, innovation process Zpiq
t as in (44), consen-

sus term K
piq
t :“

∞N
j“1

rAtsi,jpx̂pjq
´ x̂piq

q, where rAtsi,j

is the pi, jq entry of the adjacency matrixAt of the given
network Gt, and matrices Lpiq, P,Rpiq and G as in (11).
Clearly, the switching times ttjujPN are known at each
sensing node.

The main result of this section concerns the achievement
of omniscience in the usual sense and it is stated with
no proof as follows.

Theorem 7.1 Consider a network Ntdescribed by a
graph Gt with switching topology At P tA

1

, . . . ,Alu, l a
given integer, and a system (8) with pC,Aq observable

10



(collective observability). Given a compact set C Ä Rn

and ⇣ P R°, under assumptions (H0)1-(H2)1 there exist
✏˚

• 1, t˚
° 0, diagonal positive definite �, Dt diag-

onal and positive definite at each t • 0, � P K8 and
c P R° such that for all ✏ • ✏˚ the distributed observer
tx̂piq

uiPN over the given network described by (47)
achieves asymptotic omniscience for (2) relatively to C
with error tolerance ⇣ as long as infjPNptj`1

´ tjq • t˚.

Therefore, asymptotic omniscience is obtained at the
price of a su�ciently large dwell time.

8 Example and simulations

To test our distributed observer we consider a simple
plant built on coupled Van der Pol oscillators (VPO: [7]).
The plant has the form (2) with:

A “ IN b

ˆ
0 1
0 0

˙
, C “ IN b p 1 0 q , N • 2,

�pxq “ diag

"ˆ
0

f
1

pxq

˙
, . . . ,

ˆ
0

fN pxq

˙*

with x “ pxT
1

, . . . , xT
N q

T , xi P R2, i “ 1, . . . , N , and

fipxq “ ´µxi,1 ` µp1 ´ x2

i,1qxi,2

` apx
1,1`. . .`xi´1,1´pN ´ 1qxi,1q

` bpx
1,2`. . .`xi´1,2´pN ´ 1qxi,2q,

parameters µ “ 5 and coupling coe�cients a “ 2 and
b “ 0.1. We have chosen N “ 12 (12 nodes in the graph)
so that the state space has dimension n “ 2N “ 24.
As compact set C which contains the system’s state

Fig. 1. communication directed graph

trajectories, we have taken C “ tx P R2n : }x} § 15u

(the system has a limit cycle contained in this region).
Assumptions (H1)-(H2) are satisfied with r

2j`1

“ 1,

Fig. 2. distributed estimation error: omniscience over time

r
2pj`1q “ 3, gj “ 1 , j P N (in this example S “ t2j :
j P Nu) and

B “ diagtp0, 1q

T , p0, 1q

T , ¨ ¨ ¨ , p0, 1q

T , p0, 1q

T
u

F “

¨

˚̊
˚̊
˝

µa µb 0 0 ¨ ¨ ¨ 0 0 0 0
a b µa µb 0 0 0 0
...

...
...

...
...

a b a b ¨ ¨ ¨ µa µb 0 0
a b a b ¨ ¨ ¨ a b µa µb

˛

‹‹‹‹‚

with µa :“ µ ` apN ´ 1q and µb :“ µ ` bpN ´ 1q. We
consider the strongly connected directed graph in Fig. 1
and each vertex measuring only the position of a single
VPO. Following the procedure in IV.D we have chosen
✏ “ 11.00 and � “ 12.00 and designed our distributed
observer (9). In Fig. 2 we plot the estimation error of
each local observer.

9 Conclusions

In this paper we have proposed a novel distributed ob-
server design for a general class of nonlinear systems.
The information among the local observers is exchanged
over a strongly connected and directed digraph. The lo-
cal observer attemps to estimate the entire state of the
plant and the asymptotic omniscience is studied and
proved via a Lyapunov approach. Theoretical results
have been confirmed by the numerical simulation. We
also discussed robustness and switching topologies is-
sues. In future research, we plan to focus on global dis-
tributed nonlinear scenarios.
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A Incremental homogeneity

The notion of (incremental) homogeneity in a general-
ized sense has been introduced in [2] in the context of
semi-global stabilization and observer design problems.
Here we recall this notion in a slightly more general form.
Let �fpx1, x2

q :“ fpx1
q ´ fpx2

q and if f is the identity
function we simply write �px1, x2

q :“ x1
´ x2.

Definition A.1 Aparametrized function �✏ P C0

pRn,Rl
q,

✏ ° 0, is said to be incrementally homogeneous
(i.h.) with quadruple tr, d, h,�px1, x2

qu if there exist
d P Rl, h P Rn, r P Rn

° and � P C0

pRn
ˆ Rn,Rlˆn

q such
that for all ✏ ° 0 and x1, x2

P Rn

��✏p✏
r

˛ x1, ✏r ˛ x2
q “ ✏d ˛ �px1, x2

q�p✏h ˛ x1, ✏h ˛ x2
q

When x2 :“ 0, we say that �✏ is homogeneous with
quadruple tr, d, h,�1

pxqu where �1
pxq “ �px, 0q.

Example A.1 The function �✏pxq :“ x
1

` x3

2

(in this
case �✏ does not depend on the dilating parameter) is i.h.
with quadruple tr, 0, h,�px1, x2

qu, where r :“ p1, 2q

T ,
h :“ p1, 6q

T and �px1, x2
q :“

`
1, px1

2

q

2

` px2
2

q

2

` x2
2

x1
2

˘
.

There are functions, like sinx, which are not i.h. but be-
haves in the upper bound as an i.h. function. This moti-
vates the following definition (xxayy denotes the column
vector of the absolute values of the elements of a P Rn).

Definition A.2 Aparametrized function �✏ P C0

pRn,Rl
q,

✏ ° 0, is said to be incrementally homogeneous in the
upper bound (i.h.u.b.) with quadruple tr, d, h,�px1, x2

qu

if there exist d P Rl, h P Rn, r P Rn
°, � P C0

pRn
ˆ

Rn,Rlˆn
• q such that for all ✏ • 1 and x1, x2

P Rn

xx��✏p✏
r
˛x1, ✏r˛x2

qyy®✏d˛�px1, x2
q

AA
�p✏h˛x1, ✏h˛x2

q

EE

When x2 :“ 0, we say that �✏ is homogeneous in the up-
per bound with quadruple tr, d, h,�1

pxqu where �1
pxq “

�px, 0q.

Example A.2 The function �✏pxq :“ ✏ px
2

x3

2

gpx
1

q q

T ,
g P C0

pR,Rq any bounded and globally Lipschitz func-
tion, is i.h.u.b. with triple tr, d, h,�px1, x2

qu, where
r :“ p1, 2q

T , d :“ p3, 7q

T , h :“ p1, 0q

T and �px1, x2
q

defined as follows:

r�px1, x2
qs

1,1 “ 0, r�px1, x2
qs

1,2 “ 1

r�px1, x2
qs

2,1 “ px2
2

q

3

|gpx1
1

q ´ gpx2
1

q|

|x1
1

´ x2
1

|

,

r�px1, x2
qs

2,2 “ |px1
2

q

2

` px2
2

q

2

` x1
2

x2
2

||gpx1
1

q|.

Remark A.1 An important consequence of the defini-
tions A.1 and A.2 is the following. If �✏ P C0

pRn,Rl
q,

✏ ° 0, is incrementally homogeneous in the upper bound
with quadruple tr, d, h,�px1, x2

qu then by letting

xi
p�q “ px

1

, . . . , xi´1

, xi ` �, xi`1

, . . . , xnq

and �✏,j being the j-th component of �✏ and �j,i the
pj, iq-th entry of �, we have for ✏ • 1

|��✏,jp✏r ˛ x, ✏r ˛ xi
p�qq| § ✏dj

`h
i

˛ �j,ipx, x
i
p�qq|�|.

If the partial derivatives of � exist and are continuous,
by dividing both part of the above inequality by ✏ri |�|

and letting � Ñ 0 we get for ✏ • 1

ˇ̌
ˇ̌B�✏,j

Bxi
p✏r ˛ xq

ˇ̌
ˇ̌

“ lim
�Ñ0

|��✏,jp✏r ˛ x, ✏r ˛ xi
p�qq|

|✏ri�|

§ ✏dj

`h
i

´r
i

˛ �j,ipx, xq.

As a consequence, if we consider the function ⌘✏ : Rn
ˆ

Rn
Ñ Rl: ⌘✏px1, x2

q :“ B�
✏

Bx1 px1
qx2 we obtain the following

inequality for ✏ • 1 and x1, x2
P Rn

xx⌘✏p✏
r

˛ x1, ✏r ˛ x2
qyy ® ✏d ˛ �px1, x1

q

@@
✏h ˛ x2DD

(A.1)

i.e. ⌘✏ is homogeneous in the upper bound with quadru-

ple

"ˆ
r
r

˙
, d,

ˆ
0
h

˙
, p 0nˆn �px1, x2

q q

*
.

Properties of incremental homogeneity can be found in
[2]. Incremental homogeneity in the upper bound as in-
troduced above cope with large values of the dilating pa-
rameter (i.e. ✏ °° 1). Another related important incre-
mental homogeneity notion for the behavior of a func-
tion near 0 (i.e. ✏ †† 1) is the following.

Definition A.3 A function � P C0

pRn,Rq is said to
be uniformly incrementally homogeneous in the 0-limit
(u.i.h-0) with triple tr, d,�

0

px1, x2
qu, weights r, degree d

and limit function �
0

px1, x2
q, if there exist d P R, r P Rn

°
and �

0

P C0

pRn
ˆRn,Rq such that for all compact sets

C Ä Rn and S Ä Rn

lim
�Ñ0

max
x

1PC
x

2PS

ˇ̌
ˇ̌��px1, x1

` �r ˛ x2
q

�d
´ �

0

px1, x2
q

ˇ̌
ˇ̌

“ 0.

A function � P C0

pRn,Rl
q is said to be uniformly

incrementally homogeneous in the 0-limit with triple
tr, d,�

0

px1, x2
qu, weights r, degrees d and limit func-

tion �
0

px1, x2
q, if �j , j “ 1, . . . , l, is uniformly in-

crementally homogeneous in the 0-limit with triple
tr, dj ,�0,jpx1, x2

qu and �
0,jpx1, x2

q is the j-th row of
�

0

px1, x2
q.

In this case the limit function �
0

px1, x2
q is the stack

of the rows �
0,jpx1, x2

q, j “ 1, . . . , l, i.e. �
0

px1, x2
q “

12



p�
0,1px1, x2

q ¨ ¨ ¨ �
0,lpx

1, x2
q q

T .

Example A.3 The function �pxq :“ x ` x3 is u.i.h-0
with triple t1, 1, x2

` 3px1
q

2x2
u.

B Auxiliary results and properties

B.1 Properties of block matrices pC,Aq

For any diagonal G P RnNˆnN the matrices A and C in
(3) have the following properties summed below without
further comments:

CAT
“ 0, CCT

“ I, (B.1)

pGAT
q

j
“ 0, @j • n, pI ´ GAT

q

´1

“

n´1ÿ

j“0

pGAT
q

j (B.2)

CGAT
“ 0, CpI ´ GAT

q

´1

“ C, (B.3)

GATA“ATAGATA, GAAT
“AATGAAT , (B.4)

CTC“I ´ ATA, CTCATA“0, (B.5)

ATApI ´ ATAq“0, AAT
pI ´ AAT

q“0. (B.6)

B.2 Group properties of dilations and its action

For any diagonal matrix D: D ˛ ✏r “ ✏r ˛ D (commuta-
tivity). For any matrices R,S with suitable dimensions:

pRSq ˛ ✏r “ RpS ˛ ✏rq, ✏r ˛ pRSq “ p✏r ˛ RqS

pR ˛ ✏rqS “ Rp✏r ˛ Sq, Sp✏r ˛ Rq “ pS ˛ ✏rqR

(associativity) and pR ˛ ✏rqT “ ✏r ˛ RT .

B.3 Auxiliary lemmas for graphs

First, we borrow two lemmas from [14], [17], [20] and [5].

Lemma B.1 Assume G is a strongly connected directed
graph with Laplacian L. There exists a unique positive
row vector d “ pd

1

, . . . , dN q such that dL “ 0 and d1N “

N . If D :“ diagtd
1

, . . . , dNu then L̂ :“ DL ` LTD is
positive semi-definite and L̂1N “ 0.

Let D and L̂ be as in the above lemma.

Lemma B.2 For a strongly connected directed graph G
with Laplacian L, 0 is a simple eigenvalue of L̂. Further-
more, its eigenvalues can be ordered as �

1

“ 0 † �
2

§

�
3

§ ¨ ¨ ¨ § �N and there exists a N ˆ N orthogonal
matrix such that its first row is 1?

N
1T
N and

T pDL ` LTDqTT
“ ⇤ :“ diagt0,�

2

, . . . ,�Nu. (B.7)

B.4 Auxiliary lemmas for negative definite nonlinear
forms

A crucial lemma in our nonlinear distributed estimation
problem is the following.

Lemma B.3 Let C Ä Rn and ⌦ Ä RˆN :“ Rn
ˆ ¨ ¨ ¨ ˆ

Rn (N times) be compact sets, both containing the ori-
gin, and a continuous function V : C ˆ RˆN

Ñ R:

Vpx, eq :“ ´p�qeT⇤e ` Wpx, eq

be given for some  P K8 and positive semidefinite ⇤ P

RnNˆnN with continuous W : C ˆRˆN
Ñ R. Moreover,

Wpx, 0q “ 0 for all x P C. If (i) there exists a continuous
W

0

: CˆRˆN
Ñ R such that for anyN -tuple of compact

sets Sp1q, . . . ,SpNq
Ä Rn with SˆN :“ Sp1q

ˆ ¨ ¨ ¨ ˆSpNq:

lim
�Ñ0

max
xPC

ePSˆN

ˇ̌
ˇ̌Wpx,�eq

�2
´ W

0

px, eq

ˇ̌
ˇ̌

“ 0, (B.8)

(ii) for each e P ⌦zt0u

eT⇤e “ 0 ñ Wpx, eq † 0, @x P C, (B.9)

eT⇤e “ 0 ñ W
0

px, eq † 0, @x P C, (B.10)

there exists � ° 0 such that

Vpx, eq † 0,@� • �, e P ⌦zt0u, x P C.

PROOF. I) Using (i) we can select �˚
° 0 and an open

ball B Ä ⌦ around e “ 0 such that

Vpx, eq † 0, @� • �˚, e P Bzt0u, x P C. (B.11)

Indeed, first notice that for each x P C, e P RˆN and
µ ° 0

W
0

px, µeq

µ2

“

1

µ2

lim
�Ñ0

Wpx,�pµeqq

�2

“ lim
�Ñ0

Wpx, p�µqeqq

p�µq

2

“ W
0

px, eq (B.12)

Let S� Ä RˆN be the sphere with radius � centered at
0. Clearly, S1 is contained in a compact set of the form
SˆN . We first show, by contradiction, that there exists
a real number �

0

° 0 satisfying:

´p�qeT⇤e ` W
0

px, eq † 0, @� • �
0

, x P C, e P S1.

Suppose there is no such �
0

. This means there is a se-
quence tpxi, eiquiPN P C ˆ S1 which satisfies :

´ieTi ⇤ei ` W
0

pxi, eiq • 0 @i P N. (B.13)
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Since C ˆ S1 is compact there exists a convergent sub-
sequence tpxi

l

, ei
l

qulPN P C ˆ S1 to a point tpx8, e8qu P

C ˆ S1. Since the functions ⌘ : RˆN
Ñ R, e fiÑ ⌘peq “

eT⇤e and W
0

are bounded on S1 and C ˆ S1, respec-
tively, and ⌘ is nonnegative, on account of (B.13) ⌘ must
tend to zero as il tends to infinity. By continuity of ⌘ and
W

0

it follows that ⌘pe8q “ 0 and, on account of (B.13),
W

0

px8, e8q • 0. But this is a contradiction from (B.10).
We conclude that there exist �

0

, �
0

° 0 such that

´p�q⌘peq ` W
0

px, eq § ´�
0

† 0,

@� • �
0

, x P C, e P S1. (B.14)

On account of (B.8) and since ⌘ is a quadratic function,
there exists �

0

° 0 such that for all � P p0,�
0

s, x P C
and e P S1

Wpx,�eq § �2W
0

px, eq ` �2
�
0

2
, ⌘p�eq “ �2⌘peq, (B.15)

which together give

´p�
0

q⌘peq`Wpx, eq§ �́2p�
0

q⌘peq`�2W
0

px, eq`�2
�
0

2
.

Using (B.14), we obtain that for all � P p0,�
0

s, x P C
and e P S1: ´p�

0

q⌘p�eq`Wpx,�eq § ´�2 �0
2

and, since
⌘ is nonnegative, for all � P p0,�

0

s, � • �
0

, x P C and
e P S1: ´p�q⌘p�eq ` Wpx,�eq § ´�2 �0

2

. This implies
(B.11) with �˚

“ �
0

and B “ �
0

intpS1

q “ intpS�0
q (int

denotes the interior of a set).

II) To complete the proof, we will show that there exists
�˚˚

• �˚ such that Vpx, eq † 0 for all � • �˚˚, for all e P

⌦zB and x P C and our lemma will be proved with � “

�˚˚. Assume our claim be false. For each n there exists
a point pxn, enq P C ˆ p⌦zBq such that ´pnqeTn⇤en `

Wpxn, enq • 0. Since  P K8, for each m and for all
n • m

´pmqeTn⇤en ` Wpxn, enq • 0.

But C ˆ p⌦zBq is compact in Rn
ˆ RˆN so that there

exists a point px˚, e˚
q P Cˆp⌦zBq to which the sequence

tpxn, enqunPN converges as n Ñ `8. Therefore, using
continuity of W

´pmqpe˚
q

T⇤e˚
` Wpx˚, e˚

q • 0 (B.16)

for all m ° 0.

If e˚
P p⌦zBq is such that pe˚

q

T⇤e˚
“ 0, since t0u R

p⌦zBq we get a contradiction from (ii).

If e˚
P p⌦zBq is such that pe˚

q

T⇤e˚
° 0 then, since

 P K8, there exists m˚ such that for all m • m˚:
´pmqpe˚

q

T⇤e˚
` Wpx˚, e˚

q † 0 which contradicts
(B.16).

B.5 Auxiliary lemmas for incremental homogeneity

Preliminarly, recall that A ® B, A,B P Rmˆl, means
Ai,j § Bi,j for all i “ 1, . . .m, j “ 1, . . . , l, and
max✓PQ �p✓q, � P C0

pRn,Rmˆl
q and compact Q Ä Rn,

represents any matrix M such that �p✓q ® M for all
✓ P Q. If tQpcqu is a family of compact sets Qpcq Ä Rn

for each c ° 0 and such that Qpcq Ñ t0u as c Ñ 0
then max✓PQpcq �p✓q is implicitly assumed to satisfy
max✓PQpcq �p✓q Ñ �p0q as c Ñ 0.

The proof of the following lemma is sketched for reasons
of space and follows from simple but lengthy matrix al-
gebra.

Lemma B.4 Let � and  be as in(H1). For each c ° 0
and positive definite diagonal � P Rnˆn define

Ng :“ A ` pI ` �AT
qA

n´1ÿ

j“1

p�AT
q

j (B.17)

Mgpcq :“ 2pI ` �AT
q�gpcq

n´1ÿ

j“0

p�AT
q

j (B.18)

�gpcq :“ max
x1,x2Pr´c1,c1s

�px1, x2
q (B.19)

Sgpcq :“ 2CTC�CT gpcq
n´1ÿ

j“0

p�AT
q

j (B.20)

 gpcq “ max
x1,x2Pr´c1,c1s

 px1, x2
q (B.21)

There exist c̄ ° 0 and � such that for all c P p0, c̄s

2́�`Ng`Mgpcq`Sgpcq`pNg`Mgpcq`Sgpcqq

T
§´I.

PROOF. (Sketch). By assumption(H1) �p0, 0q “ BF
and  p0, 0q “ ↵C, ↵ P r0, 1q, so that Mgp0q “

2pI`�AT
qBF

∞n´1

j“0

p�AT
q

j and Sgp0q “ 2↵CTC�CTC

(since CAT
“ 0: see section B.1). Using the fact that

↵ P r0, 1q, find positive definite diagonal � P Rnˆn such
that

2́�`Ng`Mgp0q`Sgp0q`pNg`Mgp0q`Sgp0qq

T
§´2I.

The above matrix inequality can be satisfied recursevely
on the principal minors with increasing dimensions using
Sylvester ’s criteria for negative definite matrices and by
selecting first r�sn,n ° 0 up to r�s

1,1 ° 0. Finally, pick
c̄ P R° such that for all c § c̄

Mgpcq ´ Mgp0q ` Sgpcq ´ Sgp0q

`pMgpcq ´ Mgp0q ` Sgpcq ´ Sgp0qq

T
§I

taking into account that �gpcq Ñ �gp0q and  gpcq Ñ

 gp0q as c Ñ 0.
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The following lemma can be proved by using extensively
the definition and properties of incremental homogeneity
with the properties of the saturation functions (the proof
is omitted for lack of space).

Lemma B.5 Assume (H1) and let G and � be as in
(11).

(i) ATAGATA is i.h. with quadruple pr, r ` g, g,
ATA�ATAq,

(ii) pI´GAT
q� (resp. �) is i.h.u.b. with quadruple pr, r`

g, g, pI ` �AT
q�px1, x2

qq (resp. pr, r ` g, g,�px1, x2
qq),

(iii) A ` pI ´ GAT
qA

∞n´1

j“1

pGAT
q

j is i.h.u.b. with

quadruple pr, r ` g, g, A ` pI ` �AT
qA

∞n´1

j“1

p�AT
q

j
q,

(iv) pI´GAT
q

´1 (resp. I´GAT ) is i.h.u.b. with quadru-
ple pr, r´g, g, pI ´�AT

q

´1

q (resp. pr, r´g, g, I `�AT
q),

(v) for each h P Rn
°, �h (resp. � ˝ �h) is i.h.u.b. with

quadruple pr, r ´ g, g, 2Iq (resp. pr, r ` g, g,�px1, x2
qq).
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